EE230: Solution to Homework Assignment 1

Problem 1

a. Marvell Technology Group

b. 2.3B Marvell Vs 15 Billion Iowa corn and soybean

c. Market Capitalization: 12.72B (January 2010)

Problem 2

a. Paul Gray

b. Abstract

A pipelined, 13-bit, 250-ksample/s (ks/s), 5-V, analog-to-digital (A/D) converter has been designed and fabricated in a 3-µm, CMOS technology. Monotonicity is achieved using a reference-feedforward correction technique instead of (self-) calibration of trimming to minimize the overall cost. The prototype converter requires 3400 mil², and consumes 15 mW

c. Design of a small, low power and cost effective analog to digital converter

d. CMOS technology

e. Abstract: A mobile device includes a system-on-chip (SOC) that includes a mobile device control module, a solid state disk (SSD) control module, and a random access memory (RAM) control module. The mobile device control module executes application programs for the mobile device. The solid-state disk (SSD) control module controls SSD operations. The RAM control module communicates with the mobile device control module and the SSD control module and stores both SSD-related data and mobile device-related data in a single RAM.

Problem 3

a. Average area: 1.5cm²

$$4GB \longrightarrow \frac{1.5cm^2}{4\times8\times10^9 bits} = 4.69\times10^{-11} cm^2 / bit$$

Problem 4

3.5" diameter can hold 750 GB

$$Area = \pi \times r^2 = 3.14 \times \left(\frac{3.5inch}{2} \times \frac{2.54cm}{1inch}\right)^2 = 62cm^2$$

$$\frac{62cm^2}{8\times750\times10^9} = 10.33\times10^{-12} \, cm^2 / bit$$

Problem 5

a. 16 bit is common

b. Analog levels: 2¹⁶=65536

Problem 6 (Sedra/Smith Problem 1.4)

Problem 7 (Sedra/Smith Problem 1.11)

1.11 Connect a resistor R in parallel with R_L . To make $I_L = 0.2I$ (and thus the current through R, 0.8I), R should be such

Problem 8 (Sedra/Smith Problem 1.14)

Problem 9 (Sedra/Smith Problem 1.16)

Now, when a resistance of 1.5 k Ω is connected between 4 and ground,

$$I = \frac{0.77}{6.15 + 1.5}$$
$$= 0.1 \text{ mA}$$

1.16 (a) Node equation at the common node yields $I_3 = I_1 + I_2$

Using the fact that the sum of the voltage drops across R_3 and R_3 equals 15 V, we write

$$15 = I_{1}R_{1} + I_{3}R_{3}$$

$$= 10I_{1} + (I_{1} + I_{2}) \times 2$$

$$= 12I_{1} + 2I_{2}$$

$$+15 \text{ V}$$

$$R_{2}$$

$$S \text{ k}\Omega$$

$$I_{3}$$

$$I_{4}$$

$$I_{5}$$

$$I_{7}$$

$$I_{1}$$

$$I_{1}$$

$$I_{1}$$

$$I_{1}$$

$$I_{2}$$

$$I_{3}$$

$$I_{4}$$

$$I_{5}$$

$$I_{1}$$

$$I_{1}$$

That is,

$$12I_1 + 2I_2 = 15 (1)$$

Similarly, the voltage drops across R_2 and R_3 add up to 10 V, thus

$$10 = I_2R_2 + I_3R_3$$

= $5I_2 + (I_1 + I_2) \times 2$

which yields

$$2I_1 + 7I_2 = 10$$
 (2)

Equations (1) and (2) can be solved together by multiplying (2) by 6,

$$12I_1 + 42I_2 = 60$$
 (3)

Now, subtracting (1) from (3) yields

$$40I_2 = 45$$

 $\Rightarrow I_2 = 1.125 \text{ mA}$

Substituting in (2) gives

$$2I_1 = 10 - 7 \times 1.125 \text{ mA}$$

 $\Rightarrow I_1 = 1.0625 \text{ mA}$
 $I_3 = I_1 + I_2$
 $= 1.0625 + 1.1250$
 $= 1.1875 \text{ mA}$
 $V = I_3R_3$
 $= 1.1875 \times 2 = 2.3750 \text{ V}$

To summarize:

$$I_1 \simeq 1.06 \text{ mA}$$
 $I_2 \simeq 1.13 \text{ mA}$
 $I_3 \simeq 1.19 \text{ mA}$ $V \simeq 2.38 \text{ V}$

(b) A node equation at the common node can be written in terms of V as

$$\frac{15 - V}{R_1} + \frac{10 - V}{R_2} = \frac{V}{R_3}$$

Thus,

$$\frac{15 - V}{10} + \frac{10 - V}{5} = \frac{V}{2}$$

$$\Rightarrow 0.8V = 3.5$$

$$\Rightarrow V = 2.375 \text{ V}$$

Now, I_1 , I_2 , and I_3 can be easily found as

$$I_1 = \frac{15 - V}{10} = \frac{15 - 2.375}{10} = 1.0625 \text{ mA} = 1.06 \text{ mA}$$

$$I_2 = \frac{10 - V}{5} = \frac{10 - 2.375}{5} = 1.125 \text{ mA} = 1.13 \text{ mA}$$

$$I_3 = \frac{V}{R_3} = \frac{2.375}{2} = 1.1875 \text{ mA} = 1.19 \text{ mA}$$

Method (b) is much preferred; faster, more insightful and less prone to errors. In general, one attempts to identify the least possible number of variables and write the corre-ponding minimum number of equations.

1.17 See diagram

$$\begin{array}{c|ccccc}
\hline
 & (1//1.2) & 1 & \longrightarrow & 2 & (9.1//11) \\
\hline
 & 0.545 & k\Omega & R_5 & 4.980 & k\Omega \\
\hline
 & 9 \times \frac{1.2}{1.2 + 1} & 9 \times \frac{11}{11 + 9.1} \\
\hline
 & = 4.909 & V & = 4.925 & V
\end{array}$$

$$I_5 = \frac{4.925 - 4.909}{4.98 + 3 + 0.545} = 1.88 \, \mu A$$

 $V_1 = 1.88 \ \mu A \times 3 \ k\Omega = 5.64 \ mV$